Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting
نویسندگان
چکیده
منابع مشابه
Locally stationary wavelet packet processes : nonstationarity detection and model fitting
For nonstationary time series the fixed Fourier basis is no longer canonical. This article shows how the choice of analysis basis influences the detection of nonstationarities within time series. Rather than limit our basis choice to wavelet or Fourier functions we develop a new stationarity test using a (multiple) bootstrap hypothesis test based on non-decimated wavelet packets. Non-decimated ...
متن کاملForecasting Using Locally Stationary Wavelet Processes
Locally stationary wavelet (LSW) processes, built on non-decimated wavelets, can be used to analyze and forecast non-stationary time series. They have been proved useful in the analysis of financial data. In this paper we first carry out a sensitivity analysis, then propose some practical guidelines for choosing the wavelet bases for these processes. The existing forecasting algorithm is found ...
متن کاملGeneralized Information Criteria in Model Selection for Locally Stationary Processes
The problem of fitting a parametric model of time series with time varying parameters attracts our attention. We evaluate a goodness of time varying spectral models from an information theoretic point of view. We propose model selection criteria for locally stationary processes based on nonlinear functionals of a time varying spectral density without assuming that the true time varying spectral...
متن کاملSemiparametric estimation by model selection for locally stationary processes
Over the last decades more and more attention has been paid to the problem how to fit a parametric model of time series with time-varying parameters. A typical example is given by autoregressive models with time-varying parameters (tvAR processes). We propose a procedure to fit such time-varying models to general nonstationary processes. The estimator is a maximum Whittle likelihood estimator o...
متن کاملSpectral Correction for Locally Stationary Shannon Wavelet Processes
It is well-known that if a time series is not sampled at a fast enough rate to capture all the high frequencies then aliasing may occur. Aliasing is a distortion of the spectrum of a series which can cause severe problems for time series modelling and forecasting. The situation is more complex and more interesting for nonstationary series as aliasing can be intermittent. Recent work has shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 2017
ISSN: 0143-9782
DOI: 10.1111/jtsa.12230